Canonical Dual Transformation Method and Generalized Triality Theory in Nonsmooth Global Optimization
نویسنده
چکیده
This paper presents, within a unified framework, a potentially powerful canonical dual transformation method and associated generalized duality theory in nonsmooth global optimization. It is shown that by the use of this method, many nonsmooth/nonconvex constrained primal problems in Rn can be reformulated into certain smooth/convex unconstrained dual problems in Rm with m 6 n and without duality gap, and some NP-hard concave minimization problems can be transformed into unconstrained convex minimization dual problems. The extended Lagrange duality principles proposed recently in finite deformation theory are generalized suitable for solving a large class of nonconvex and nonsmooth problems. The very interesting generalized triality theory can be used to establish nice theoretical results and to develop efficient alternative algorithms for robust computations.
منابع مشابه
Canonical Duality Theory: Connections between nonconvex mechanics and global optimization
This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...
متن کاملGlobal optimal solutions to nonconvex optimisation problems with a sum of double-well and log-sum-exp functions
This paper presents a canonical dual approach for solving a nonconvex global optimisation problem with a sum of double-well and log-sum-exp functions. Such a problem arises extensively in mechanics, robot designing, information theory and network communication systems. It includes fourth-order polynomial minimisation problems and minimax problems. Based on the canonical duality theory, this non...
متن کاملOn the Triality Theory in Global Optimization
Triality theory is proved for a general unconstrained global optimization problem. The method adopted is simple but mathematically rigorous. Results show that if the primal problem and its canonical dual have the same dimension, the triality theory holds strongly in the tri-duality form as it was originally proposed. Otherwise, both the canonical min-max duality and the double-max duality still...
متن کاملDuality in Distributed-Parameter Control of Nonconvex and Nonconservative Dynamical Systems with Applications
Based on a newly developed canonical dual transformation methodology, this paper presents a potentially useful duality theory and method for solving fully nonlinear distributed-parameter control problems. The extended Lagrange duality and the interesting triality theory proposed recently in finite deformation theory are generalized into nonconvex dissipative Hamiltonian systems. It is shown tha...
متن کاملSolutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality
Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 17 شماره
صفحات -
تاریخ انتشار 2000